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1. Introduction

In gauge theory/gravity correspondences, a saddle point in the gauge theory path integral

is expected to represent the space-time geometry in gravity. Since the saddle point is

determined by the dynamics of the gauge theory, the space-time is said to be emergent. A

notable example of such a phenomenon is the emergence of the sphere of the dual AdS5×S5

geometry from the matrix quantum mechanics governing the strong coupling dynamics of

the constant modes of the scalars of N = 4 super Yang-Mills compactified on a S3 [1].1

When an operator is inserted in the gauge theory path integral, the saddle point, as

well as the space-time represented by it, gets deformed. The new space-time develops

bubbles of new cycles carrying fluxes. Such bubbling geometries were originally found for

half-BPS local operators in N = 4 super Yang-Mills theory in the context of the AdS/CFT

correspondence [3, 4]. They were later generalized to include Wilson loops [5 – 7] and

1See [2] for a review of subsequent developments and a list of relevant references.
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surface operators [8] of the N = 4 theory, while bubbling in topological string theory was

found and studied in [9 – 11].

The current work revisits the bubbling geometries for circular supersymmetric Wilson

loops in N = 4 super Yang-Mills. These geometries were constructed in a complete form

in reference [7]. The ten-dimensional space-time is a warped product

ds2 = f2
1ds

2
AdS2

+ f2
2ds

2
S2 + f2

4ds
2
S4 + ds2Σ (1.1)

of AdS2 × S2 × S4 and a half-plane Σ. The radii f1, f2, f4 and all other supergravity

fields are functions on Σ given in terms of two holomorphic functions, A and B. In fact,

Σ is naturally identified with the lower half-plane in one sheet of a hyperelliptic surface,

also denoted by Σ, and A and B are constructed geometrically. Thus the data (Σ, A, B)

completely characterize the bubbling solution.

In this paper, we demonstrate that the deformed saddle points in gauge theory repre-

sent the bubbling geometries by making use of a matrix model. It was conjectured in [12, 13]

that the Wilson loop expectation value is captured by the Gaussian matrix model with a

loop operator insertion. The conjecture was recently proved in reference [14], where it was

also shown that the matrix is the constant mode of a scalar field.2 We show that the saddle

point configuration of the matrix eigenvalues back-reacts to the operator insertion and the

hyperelliptic surface Σ arises as the spectral curve in a generalized sense that we explain

in detail.3 We also find an interpretation of A and B in the matrix model.

Concretely, the circular supersymmetric Wilson loop is defined as

WR = TrR P exp

∮

(iA+ θiφids). (1.2)

Here A is the gauge field and φi are the six real scalars. The integral is along a circle

in R
4, θi is a constant unit vector in R

6, and s is the parameter of the circle such that

||dx/ds|| = 1. The trace is taken in an irreducible representation R of U(N) or SU(N).

Such R is specified by a Young tableau, which is also denoted by the same symbol R. The

dual bubbling geometry has small curvature when R has long edges and it is characterized

by a genus g hyperelliptic surface Σ, where g is the number of blocks in R (see figure 1).

The Wilson loop expectation value is given by the matrix integral

〈WR〉YM =
1

Z

∫

[dM ]e−
2N
λ

TrM2
TrRe

M . (1.3)

The N ×N matrix M is hermitian and Z is the partition function. For representations R

that give rise to smooth bubbling geometries, we solve the matrix model in the limit where

N is infinite and the ’t Hooft coupling λ ≡ g2
YMN is large. As it turns out, A and B are

simply related to the resolvent ω(z) and the spectral parameter z of the matrix model:

A ∝ ω(z) − 2z , B ∝ z + const. (1.4)

2In [15] it was argued that the matrix model arises as a mirror of the topological A-model for the

AdS5 × S5 superstring [16].
3It was originally argued by Yamaguchi [5] that the eigenvalue distribution of the matrix model charac-

terizes the bubbling geometry.

– 2 –



J
H
E
P
0
9
(
2
0
0
8
)
0
5
0

R

n1

K1

n2

K2

Kg−1

ng

Kg

ng+1

Figure 1: The Young tableau R is shown rotated and inverted. It consists of g blocks, the I-th

one of them having nI rows of length KI . We set Kg+1 ≡ 0 and ng+1 ≡ N −∑g

I=1
nI .

We also show that the resolvent is given by the indefinite integral of a meromorphic 1-form

α on the same hyperelliptic surface Σ. The surface Σ is given by the equation

y2 = H2g+2(z) , (1.5)

and the 1-form α by

α = ∂ω =

(

2 − 2
ag+1(z)

√

H2g+2(z)

)

dz . (1.6)

The polynomials H(z) and a(z) have degrees 2g+2 and g+1 respectively. We find from the

matrix model analysis a set of constraints that determine the coefficients of a(z) and H(z)

uniquely. These constraints are identical to the ones that arise in the bubbling geometry.

The surface Σ is the spectral curve of the matrix model in the sense that the eigenvalue

distribution is determined by Σ and α.

Given our large N solution of the matrix model, the Wilson loop expectation value can

be easily computed. A natural question is whether it can also be reproduced in supergravity,

by evaluating the on-shell action in the bubbling geometry background. We include in this

paper some relevant calculations that will be useful for this purpose. In particular, we show

that the on-shell supergravity Lagrangian is always a total derivative. This would imply

that the on-shell action splits into two contributions, one coming from the new cycles of the

bubbling geometry and the other given as a surface integral on the conformal boundary. It

is the former contribution that we manage to compute exactly within an ansatz we make.

This work does not address the latter contribution, which seems to require a holographic

renormalization technology beyond the one currently available. Indeed, because the new

cycles mix non-trivially the AdS5 and S5 directions, usual counter-terms in five-dimensional

supergravity cannot be used, at least in a straightforward way.

It is however possible to use the identification of the matrix model and supergravity

data to compare the correlators of the Wilson loop with local operators, namely chiral

primaries and the energy-momentum tensor. This is reported in a companion paper [17].
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We structure the paper as follows. In section 2, we study the matrix model for Wilson

loops dual to bubbling geometries. We solve the model, obtain its spectral curve, and

show that it is the hyperelliptic surface that characterizes the bubbling geometry dual to

the Wilson loop. Section 3 then focuses on the Wilson loop expectation value. Using our

solution, we compute the Wilson loop expectation value for representations that correspond

to smooth bubbling geometries. This reproduces the result of [18] in a certain limit. We

next show that the on-shell supergravity Lagrangian is a total derivative and compute the

contributions from the new cycles that appear in the bubbling geometry. We then conclude

the paper by discussing the outlook in section 4. The appendices contain details used in

the text.

2. Spectral curves and bubbling geometries

The expectation value of a circular Wilson loop in N = 4 super Yang-Mills is captured

by a Gaussian matrix model [12 – 14]. This was originally proposed for half-BPS loops

in the fundamental representation (which are dual to fundamental strings in the bulk),

but the conjecture has later been extended and checked to hold also for circular loops

in arbitrary representations R of the gauge group [19 – 23] and for some loops preserving

reduced amounts of supersymmetry [24 – 28]. The precise statement is that the Wilson

loop expectation value for the U(N) theory is given by

〈WR〉U(N) =
1

Z

∫

[dM ] exp

(

−2N

λ
TrM2

)

TrRe
M . (2.1)

Here M is an hermitian matrix and the partition function Z of the matrix model is defined

as the integral without the insertion TrRe
M . We use the standard hermitian measure [dM ].

In the absence of operator insertions, the eigenvalues are distributed in the large N limit

according to the Wigner semi-circle law.4

To make better contact with the supergravity solution, it turns out to be more conve-

nient to follow the procedure delineated in [11] and decompose M in g+1 sub-blocks M (I)

of size nI ×nI . The expectation value of the loop is then given by several Gaussian matrix

integrals correlated by interactions between the sub-blocks:

〈WR〉U(N) =
1

Z

∫ g+1
∏

I=1

[dM (I)]e−
2N
λ

P

I Tr(M (I))2eKITrM (I)
∏

I<J

det
(M (I) ⊗ 1 − 1 ⊗M (J))2

1 − e−M (I) ⊗ eM
(J)

.

(2.2)

The eigenvalues of M (I) for fixed I are distributed along some interval [e2I , e2I−1]. In the

following, we drop the exponential interactions by replacing (1 − e−M (I) ⊗ eM
(J)

) with 1.

This is a consistent approximation in the limit

λ≫ 1 , g2
YMnI = O(λ) , g2

YM(KI −KI+1) = O(λ1/2) , (2.3)

4Pedagogical references on general matrix models include [29, 30].
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because e2I−1 − e2I = O(
√

g2
YMnI) and e2I − e2I+1 = O(g2

YM(KI −KI+1)) as one can see

from the saddle point equations below.

Going to the eigenvalue basis, the matrix model in (2.2) becomes (here i = 1, . . . , nI

labels the eigenvalues of the I-th sub-block)

〈WR〉U(N) ∝
∫

∏

I,i

dm
(I)
i exp

[

− 2N

λ

(

m
(I)
i

)2
+KIm

(I)
i

]

∏

(I,i)<(J,j)

[

m
(I)
i −m

(J)
j

]2
.

(2.4)

We have introduced a linear ordering in the set of all the eigenvalues so that the last

product is taken over distinct pairs of eigenvalues. The saddle point equations are

−4N

λ
m

(I)
i +KI + 2

∑

(J,j)6=(I,i)

1

m
(I)
i −m

(J)
j

= 0. (2.5)

By defining the resolvent

ω(z) ≡ g2
YM

∑

(I,i)

1

z −m
(I)
i

, (2.6)

the eqs. (2.5) can be written, for x ∈ [e2I , e2I−1], as

−4x+ g2
YMKI + ω+(x) + ω−(x) = 0 , (2.7)

where ω±(x) ≡ ω(x± iǫ).

2.1 A hyperelliptic surface as the spectral curve

By differentiating eq. (2.7), one can see that ω′
± = 4 − ω′

∓, so that the combination

ω′(4 − ω′) (2.8)

is invariant when crossing the cut. Let us now consider the behavior of this expression close

to a branch point, say e1. The eigenvalues are expected to produce square root branch

cuts. Since ω(z) satisfies eq. (2.7), locally it is given by

ω ∼ 2z − 1

2
g2
YMK1 + c

√
z − e1, (2.9)

where c is some constant. Then

ω′(4 − ω′) ∼
(

2 +
c

2
√
z − e1

)(

2 − c

2
√
z − e1

)

= 4 − c2

4(z − e1)
. (2.10)

The same behavior is found for every branch point ei:

ω′(4 − ω′) ∼ Ci

z − ei
as z → ei , Ci = const., (2.11)

– 5 –
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so the combination

ω′(4 − ω′) −
2g+2
∑

i=1

Ci

z − ei
(2.12)

is regular everywhere on the complex plane. The first term behaves as O(1/z2) for large

z by the definition of ω. Thus the combination must vanish everywhere and, in addition,

the second term has to be of the form

−
2g+2
∑

i=1

Ci

z − ei
= − f2g(z)

H2g+2(z)
, (2.13)

with f2g(z) a polynomial of degree 2g and

H2g+2(z) ≡
2g+2
∏

i=1

(z − ei) . (2.14)

The solution to the quadratic equation

ω′(4 − ω′) =
f2g(z)

H2g+2(z)
(2.15)

is then

ω′ = 2 −
√

4 − f2g(z)

H2g+2(z)
≡ 2 − 2

ag+1(z)
√

H2g+2(z)
. (2.16)

Here we have selected the negative sign in front of the square root to guarantee the correct

behavior for z → ∞. In introducing the monic polynomial ag+1(z) = zg+1 + · · · , we noted

that H2g+2 − f2g/4 has to be a perfect square, so that the only singularities of ω′ are the

branch points ei.

We can geometrically interpret eq. (2.16) by saying that the resolvent ω(z) is the

indefinite integral

ω(z) =

∫ z

∞

α (2.17)

of a meromorphic 1-form

α =

(

2 − 2
ag+1(z)

√

H2g+2(z)

)

dz (2.18)

on the hyperelliptic curve defined by

y2 = H2g+2(z) . (2.19)

The only singularity of the 1-form α is the double pole at z = ∞ on the second sheet.

– 6 –
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Figure 2: The A- and B-cycles of the hyperelliptic surface Σ of genus g = 2.

2.2 Parameters and constraints

The parameters in the definition of the spectral curve and the one-form are the 3g + 3

coefficients of the two monic polynomials ag+1 ≡ a and H2g+2 ≡ H. Let us study the

constraints that determine these parameters.

The constraints are most concisely expressed in terms of period integrals, so let us

introduce the A- and B-cycles of the hyperelliptic surface in the standard way (see figure 2):

the cycle AI (with I = 1, . . . , g + 1) circles the I-th cut [e2I , e2I−1] clockwise. Only the

first g of the A-cycles are independent, since Ag+1 = −A1 − · · · −Ag. The cycle BI (with

I = 1, . . . , g) goes through the I-th and the (g + 1)-th cuts and has intersection numbers

#(AI ∩BJ) = δIJ for J = 1, 2, . . . , g.

1. The first g+ 1 constraints come from the requirement that the resolvent ω(z) should

be single-valued on the physical sheet. Since it is obtained by integrating the one-form

α, we need that
∮

AI

α = 0, I = 1, . . . , g + 1. (2.20)

These g + 1 constraints are all independent: even though
∑g+1

I=1AI is a trivial cycle

in homology, the condition
∫

P

AI
α = 0 applied to (2.18) is non-trivial and ensures

that no logarithmic term appears in the expansion of ω around z = ∞.

2. According to the saddle point equations (2.7), the value of ω along the cycle BI goes

from ω to 4z − ω in passing through the (g + 1)-th cut from the first to the second

sheet (recall that Kg+1 = 0), and then from 4z−ω to ω+ g2
YMKI when coming back

to the first sheet across the I-th cut. In terms of the one-form α, we get g conditions
∮

BI

α = g2
YMKI , I = 1, . . . , g. (2.21)

3. Since the I-th cut contains nI eigenvalues, the definition (2.6) implies the following

g + 1 conditions
∮

AI

ω dz = −2πig2
YMnI , I = 1, . . . , g + 1. (2.22)

The integral should be performed on the first sheet.

– 7 –
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4. The 3g + 2 conditions above determine ag+1(z) and H2g+2(z) up to a shift of z. The

last condition that fixes this ambiguity is

ω(e2g+2) = 2e2g+2 , (2.23)

which follows form (2.7) recalling that Kg+1 = 0.

We check now that ω(z) given by (2.17) together with the constraints (2.20)–(2.23)

automatically satisfies the saddle point equations (2.7). For this we need to evaluate ω just

above and below each branch cut [e2I , e2I−1]. Since we know the value of ω at z = e2g+2,

we only need to integrate α from e2g+2 to e2I along an arbitrary path on the first sheet,

and then from e2I to x± iǫ with x ∈ [e2I , e2I−1] along the cut. The key points are that

4

∫ e2I

e2g+2

a(z)
√

H(z)
dz = g2

YMKI , (2.24)

as follows from the condition (2.21), and that

√

H(x+ iǫ) = −
√

H(x− iǫ) (2.25)

on the cut. For x ∈ [e2I , e2I−1] we have

ω+(x) + ω−(x) = 2ω(e2g+2) + 2

∫ e2I

e2g+2

(

2 − 2
a√
H

)

dz

+

∫

[e2I ,x]+iǫ

(

2 − 2
a(x′)
√

H(x′)

)

dx′ +

∫

[e2I ,x]−iǫ

(

2 − 2
a(x′)
√

H(x′)

)

dx′

= 4e2g+2 + 4(e2I − e2g+2) − g2
YMKI + 4(x− e2I)

= 4x− g2
YMKI , (2.26)

so we see that the saddle point equations (2.7) are satisfied. Thus at this point we have

found the exact solution of the matrix model (2.4) in the large N limit.

2.3 Comparison

What remains to be shown is that the spectral curve (2.19) is the hyperelliptic surface that

appears as part of the bubbling solution for a Wilson loop [7].

The bubbling geometry is a warped product of AdS2 × S2 × S4 and a half-plane, as

we have mentioned in the introduction. This half-plane is taken to be the lower half-plane

in one sheet of the hyperelliptic surface given by

s2 =

2g+1
∏

i=1

(u− ẽi). (2.27)

The branch points of the surface are at u = ẽi (with i = 1, . . . , 2g + 1) and u = ẽ0 ≡
ẽ2g+2 ≡ ∞. (Notation changed from [7]: ethere

i = ẽhere
i .) The constant u0 and the branch

points ẽi are all real and ordered as follows:

ẽ2g+1 < ẽ2g < . . . < ẽ1 < u0. (2.28)

– 8 –



J
H
E
P
0
9
(
2
0
0
8
)
0
5
0

Though the r.h.s. of (2.27) is a polynomial of degree 2g+ 1 instead of 2g+ 2, the equation

can be transformed to the form (2.19) by a Möbius transformation on u.

All the supergravity fields are expressed in terms of two holomorphic functions A and

B on Σ given by

∂A = −i P (u)du

(u− u0)2s(u)
, (2.29)

B = −i 1

u− u0
. (2.30)

The polynomial P (u) has real coefficients and is of degree g + 1. The real part of A must

vanish on [ẽ2I+1, ẽ2I ] to ensure regularity of the solution, so there are constraints

∫

[ẽ2I ,ẽ2I−1]−iǫ
∂A = 0, I = 1, . . . , g + 1. (2.31)

The branch cuts [ẽ2I−1, ẽ2I−2] represent three-cycles of topology S3 that arise from the

geometric transition of D5-branes, so they carry RR three-form fluxes. Since each column

in the Young tableau R represents a D5-brane [20, 31], the flux carried by the I-th cycle

is proportional to KI −KI+1, the number of columns in the I-th block:

8πi

∫

[ẽ2I−1,ẽ2I−2]
∂A + c.c. =

∫

S3

FRR
(3) = 4π2(KI −KI+1)α

′ (2.32)

for I = 1, . . . , g. Similarly, the segment [ẽ2I , ẽ2I−1] represents a five-cycle of topology S5

that arises from the geometric transition of nI D3-branes [19, 31] and carries RR five-form

flux. As we show in appendix B

8π2i

∫

[ẽ2I ,ẽ2I−1]−iǫ
(A∂B − B∂A) + c.c. =

∫

S5

F(5) = 4π4α′2nI (2.33)

for I = 1, . . . , g + 1.

Shifting the imaginary part of A does not affect the physical fields. It is natural to fix

this ambiguity by requiring that

lim
u→∞

A = 0. (2.34)

The constraints (2.31)–(2.34) are equivalent to (2.20)–(2.23), respectively, if we make

the identification

ω − 2z = i
8

α′
gsA, B = i

α′

4
(z − e2g+2). (2.35)

Equivalently, we have

A = i
α′

4gs

∫ z

e2g+2

a(z′)
√

H(z′)
dz′, u− u0 =

4

α′

1

e2g+2 − z
. (2.36)

Note that g2
YM = 4πgs. Thus we have showed that the spectral curve of the matrix model

is precisely the hyperelliptic surface that characterizes the bubbling geometry.

– 9 –
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2.4 SU(N) gauge group

So far we have focused on the U(N) gauge group case. It is easy to describe what changes

for a SU(N) theory. First, the Wilson loop expectation value of the gauge theory is related

to the matrix model by a simple modification of (2.1):

〈WR〉SU(N) =
1

Z

∫

[dM ] exp

(

−2N

λ
TrM2

)

TrRe
M ′
, (2.37)

where

M ′ = M − 1

N
(TrM)1N×N (2.38)

is the traceless part of M . Since

TrRe
M ′

= e−
|R|
N

TrMTrRe
M , (2.39)

the saddle point equation (2.7) for the I-th cut becomes

−4x+ g2
YM(KI − |R|/N) + ω+(x) + ω−(x) = 0. (2.40)

Therefore the resolvents of the U(N) and SU(N) theories are simply related by a shift of

the argument:

ωSU(N)(z) = ωU(N)(z + |R|/4N). (2.41)

Equivalently, the eigenvalue distribution is simply shifted by a constant so that the average

position of the eigenvalues is the origin. The relations between ω, z and A, B become

ω − 2(z + |R|/4N) = i
8

α′
gsA, B = i

α′

4
(z − e2g+2), (2.42)

where e2g+2 ≡ eU
(N)

2g+2 + |R|/4N is the last branch point in the SU(N) case.

3. Wilson loop expectation value

Given our identification of the matrix model and supergravity data, it is natural to compare

various physical quantities computed on both sides. A companion paper [17] studies the

correlators of Wilson loops with local operators, such as chiral primaries and the energy-

momentum tensor, finding agreement between gauge theory and supergravity analysis.

Another natural quantity to compare is the Wilson loop expectation value, which we study

in this section. On the Yang-Mills side, we compute it using our large N solution of the

matrix model. We also discuss the supergravity computation though we do not complete

it in this paper.5 First we prove that the on-shell supergravity Lagrangian is always a total

derivative. Then we show that the action contains contributions from the new cycles of

the bubbling geometry and also from the boundary of space-time. We compute the first

kind of contributions. Issues with the second type are discussed in section 4.

5The computation of the expectation value of a loop dual to D3 and D5 branes [31, 32] has been

performed in [19 – 22], both using the matrix model and the DBI action.
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3.1 Wilson loop expectation value from the matrix model

To the leading order in the saddle point approximation, the normalized Wilson loop ex-

pectation value is given by

〈WR〉 = e−(Smat−S0), (3.1)

where Smat and S0 are the on-shell actions of the Gaussian matrix model with and without

Wilson loop insertion. We now proceed with computing these actions.

Again, we begin with the case of a U(N) gauge group. The on-shell value of the matrix

model action is given by

−Smat =
∑

I,i

[

−2N

λ

(

m
(I)
i

)2
+KIm

(I)
i

]

+
∑

(I,i)<(J,j)

log
[

m
(I)
i −m

(J)
j

]2

= N
∑

I

∫

[e2I ,e2I−1]
dxρ(x)

[

−2N

λ
x2 +KIx

]

+N2

∫

R

dxdyρ(x)ρ(y) log |x− y|,

(3.2)

where the eigenvalue density

ρ(x) =
1

N

∑

I,i

δ(x−m
(I)
i ) (3.3)

is related to the resolvent by

ρ(x) =
i

2πλ
(ω+(x) − ω−(x)) , ω(z) = λ

∫

R

dx
ρ(x)

z − x
. (3.4)

In the limit in which the cuts are well separated, the last term in (3.2) can be dropped,

and by using the eigenvalue density ρ(x) given by
∑

I

nI

N
δ
(

x− g2
YMKI/4

)

, (3.5)

we easily reproduce the results of [18].

The expression (3.2) may be enough for comparison with supergravity although we do

not see how the double integral can appear in gravity. We now rewrite (3.2) in a form that

involves no double integral. First, let us use the density and a principal value integral to

re-express (2.5):

−4x+ g2
YMKI + 2λP

∫

R

dyρ(y)
1

x− y
= 0 for x ∈ [e2I−1, e2I ]. (3.6)

This equation can be integrated to yield

−2x2 + g2
YMKIx+ 2λ

∫

R

dyρ(y) log |x− y| = 2g2
YMcI for x ∈ [e2I−1, e2I ], (3.7)

where cI is an integration constant. The on-shell matrix action is then

−Smat = N

g+1
∑

I=1

∫

[e2I ,e2I−1]
dxρ(x)

[

−N
λ
x2 +

1

2
KIx+ cI

]

. (3.8)
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One expression for the Wilson loop expectation value that does not involve a double integral

or cI is obtained by using (3.7) with x = e2I−1 and x = e2I :

log〈WR〉U(N) = N

g+1
∑

I=1

∫

[e2I ,e2I−1]
dxρ(x)

[

−N

λ
x2+

1

2
KIx−

N

2λ
(e22I−1+e22I)+

KI(e2I−1+e2I)

4

+
1

2

∑

J

nJ log(e2J−1 − x)(x− e2J)

]

− log
√
λ+ 3/4 + log 2 , (3.9)

where we used

S0 = N2
(

− log
√
λ+ 3/4 + log 2

)

(3.10)

that follows from the density ρ0(x) = (1/πλ)
√
λ− x2 for Wigner’s distribution.

For the SU(N) theory, we simply replace KI by KI − |R|/N :

log〈WR〉SU(N) = N

g+1
∑

I=1

∫

[e2I ,e2I−1]
dxρ(x)

[

− N

λ
x2 +

1

2
KIx− N

2λ
(e22I−1 + e22I)

+
(KI − |R|/N)(e2I−1 + e2I)

4
+

1

2

∑

J

nJ log(e2J−1 − x)(x− e2J )

]

− log
√
λ+ 3/4 + log 2. (3.11)

In this formula ρ(x) and ei are the density and the branch points in the SU(N) case, and

we have used the fact that the average eigenvalue vanishes to remove a shift of KI in the

second term inside the bracket.

3.2 Wilson loop expectation value from supergravity

Let us now turn to supergravity. The solution in [7] is for an infinite straight line along

the Lorentzian time, whereas the matrix model model computation is appropriate for a

circle in Euclidean signature. This is not a problem, since both the straight line and the

circle preserve the same isometry SO(2, 1) × SO(3) × SO(5) (albeit realized differently in

the two cases). We can then extend the solution of [7] to the circular case via a Wick

rotation, considering a fibration with the Euclidean factor H2, rather than AdS2. This

difference will not play any significant role in our analysis, so that we shall consider for

simplicity the Lorentzian signature. The Wilson loop expectation value is then given by

〈WR〉 = exp(−SE) after the Wick rotation that identifies −SE with iSL, where SE and SL

are the Euclidean and Lorentzian on-shell actions.

3.2.1 The on-shell lagrangian is a total derivative

We begin our discussion of the supergravity action by showing that the on-shell Lagrangian

density always has to be a total derivative, if it is a homogeneous function of the fields of

non-zero degree. It seems well-known that the supergravity Lagrangian is a total derivative

if the equations of motion are satisfied, though we do not know a reference that makes the

general statement explicitly.
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The argument is simple. Suppose the Lagrangian L(φ) depends on the fields φi and

their derivatives. There can be second or higher derivatives. When we take the variation

of L with respect to arbitrary changes δφi, in general we get terms that contain derivatives

of δφi. By definition, the equations of motion Ei(φ) = 0 are obtained by rewriting δL as

δL =
∑

i

δφiEi(φ) +
∑

i

Di(δφ
i;φ), (3.12)

where Di is the total derivative term that is linear in δφi. If the Lagrangian is homogeneous,

there are (usually integers) numbers nL and ni such that

L(Ωniφi) = ΩnLL(φi) (3.13)

for any constant Ω. We call ni the dimensions of the fields. By choosing Ω = 1 + ǫ so that

δφi = ǫ niφ
i, we find that

ǫ nLL(φ) =
∑

i

ǫ niφ
iEi(φ) +

∑

i

Di(ǫ niφ
i;φ). (3.14)

If the equations of motion are satisfied, the Lagrangian is a total derivative:

L(φ) =
∑

i

ni

nL
Di(φ

i;φ). (3.15)

We now apply the above consideration to the type IIB supergravity action6

2κ2 S =

∫

d10x
√−g

(

R− 1

2

∂Mτ∂
M τ̄

(Im τ)2

)

+

∫
(

−1

2
MabH

a
(3) ∧ ⋆Hb

(3) − 4F(5) ∧ ⋆F(5) − ǫabC(4) ∧Ha
(3) ∧Hb

(3)

)

. (3.16)

The action is written essentially in the convention of [34] and contains various combinations

of the fields:

τ = C(0) + ie−ϕ , (Mab) = diag(e−ϕ, eϕ) ,

F(5) = dC(4) +
1

8
ǫabB

a
(2) ∧ dBb

(2), (3.17)

where Ha
(3) = dBa

(2) and a = NS, RR. First note that the action is homogeneous of degree

8 if we assign dimension 2 to the metric gMN and p to all p-form fields (scalars are zero-

forms). So our argument applies. Since the scalars have vanishing dimensions, we can

ignore their variations. Then under arbitrary variations of the fields except the scalars, the

action changes as

2κ2δS =

∫

d10x
√−g∇M (∇NδgMN − gPQ∇MδgPQ)

+

∫

d

(

−MabδB
a
(2) ∧ ⋆Hb

(3) − 2ǫabC(4) ∧ δBa
(2) ∧Hb

(3)

− 8δC(4) ∧ ⋆F(5) + ǫabδB
a
(2) ∧Bb

(2) ∧ ⋆F(5)

)

(3.18)

6Self-duality of the five-form, F(5) = ⋆F(5), does not follow from this action, but has to be imposed by

hand. One can consider other actions where self-duality is implemented with an auxiliary field. In the

case [33] we looked at, the on-shell value does not seem to change.
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up to terms that vanish on-shell. By setting

δgMN = 2ǫgMN , δBa
(2) = 2ǫBa

(2), δC(4) = 4ǫC(4) (3.19)

and using δS = 8ǫS, we conclude that the on-shell action is given by

2κ2S =

∫

d

(

−1

4
MabB

a
(2) ∧ ⋆Hb

(3) −
1

2
ǫabC(4) ∧Ba

(2) ∧Hb
(3) − 4C(4) ∧ ⋆F(5)

)

. (3.20)

We thus see that we only need the two- and four-form fields to compute this part of the

action. Note that so far we have not committed to any particular solution.

3.2.2 Contributions from new cycles

In the solution of [7], the NS two-form is along the AdS2 directions while the RR two-form

along the S2 directions. The RR four-form has two components, one in the AdS2 ×S2 and

the other in the S4 directions. One has then

BNS
(2) = b1ê

01 , BRR
(2) = b2ê

23 , C(4) = −j1ê0123 + j2ê
4567, (3.21)

where ê01, ê23, and ê4567 are the volume forms of AdS2, S
2, and S4, respectively, all

normalized to unit radius. Note that b1, b2, j1, and j2 are real functions on Σ. Recall now

that the S2 and S4 radii vanish on segments of the real axis of Σ. Thus ê23 and ê4567 are

not globally defined forms in the ten-dimensional space-time, while ê01 is. This implies

that the Chern-Simons term in (3.16) is not globally defined. We can make it globally

defined by adding further total derivative terms

2κ2S1 =

∫

d

(

2C(4) ∧BNS
(2) ∧HRR

(3) − 1

16
BNS

(2) ∧BNS
(2) ∧ d

(

BRR
(2) ∧BRR

(2)

)

)

(3.22)

so that the new Chern-Simons term in 2κ2(S + S1) ≡ 2κ2Sbulk is
∫

2F(5) ∧BNS
(2) ∧HRR

(3) . (3.23)

The on-shell action is then given by

2κ2Sbulk =

∫

d

(

−1

4
MabB

a
(2) ∧ ⋆Hb

(3) −BNS
(2) ∧BRR

(2) ∧ dC(4)

)

, (3.24)

where we took into account (3.21).

Since some of the forms in (3.24) are not globally defined, we need caution in applying

the Poincaré lemma. Some terms in (3.24) are contributions of the non-trivial cycles in the

bubbling geometry, while the rest are from the boundary of space-time. We focus on the

former contributions. The latter should be combined with counter-terms we do not discuss

in the present work.

With our ansatz, the Hodge duals of the three-forms are given by

⋆FNS
(3) =

f2
2 f

4
4

f2
1

⋆ db1 ∧ ê234567, (3.25)

⋆FRR
(3) =

f2
1 f

4
4

f2
2

⋆ db2 ∧ ê014567. (3.26)
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We have by the Poincaré lemma

2κ2Sbulk = V

∫

∂Σ

(

−1

4
e−ϕ f

2
2 f

4
4

f2
1

b1 ⋆ db1 −
1

4
eϕ
f2
1 f

4
4

f2
2

b2 ⋆ db2 − b1b2dj2

)

. (3.27)

By ∂Σ we denote the real axis as well as a large semi-circle on the lower half-plane. We

cannot meaningfully separate contributions from the two components of ∂Σ because adding

an exact form in the integrand of (3.27) mixes them. In (3.27) we have made the important

assumption that the volume of AdS2 is regularized in a way independent of the position on

∂Σ. We have denoted the volume of AdS2 ×S2 ×S4 by V . In a more complete calculation

of the on-shell action, this assumption may need to be modified.

In appendix C, we study how various quantities in (3.27) behave in the asymptotic

region z → ∞. If we choose the coordinate to be the spectral parameter z in the SU(N)

case, both b1 and b2 vanish as z → ∞ while j2 remains finite. Thus the contribution from

the semi-circle in this parametrization vanishes.

On the real axis, the first term in (3.27) never contributes because it contains positive

powers of radii of the two spheres and always vanishes. The remaining two terms nicely

combine to give

V

∫ ∞

−∞

b2

(

1

4
eϕ
f2
1 f

4
4

f2
2

⋆ db2 + b1dj2

)

. (3.28)

The sign change from (3.27) is due to the natural direction for integration. We observe

that f4 vanishes on regions of the real axis where S4 shrinks to zero size. In fact, j2 is

constant there because otherwise F5 that contains dj2 ∧ ê4567 would be ill-defined. On the

other hand, b2 is constant on regions where S2 shrinks for a similar reason and, as we

recall in appendix A, b2 = −4ImA. Since A(e2g+2) = 0 by (2.34), the flux condition (2.32)

determines these constants to be

b2 = 2πα′KI on [e2I , e2I−1]. (3.29)

Thus we can write (3.28) as

V

g+1
∑

I=1

π

2
α′KI

∫

[e2I ,e2I−1]

(

eϕ
f2
1 f

4
4

f2
2

⋆ db2 + 4b1dj2

)

. (3.30)

The physical meaning of the integrand in (3.30) can be understood as follows. The

equation of motion for BRR
(2) can be written as

dHRR
(7) = 0, (3.31)

where

HRR
(7) ≡ eϕ ⋆ HRR

(3) + 4BNS
(2) ∧ F(5) −

1

2
BNS

(2) ∧BNS
(2) ∧HRR

(3) . (3.32)

It is easy to see that the integrand in (3.30) is proportional to the component of HRR
(7)

along the AdS2 × S4 direction. The seven-form is to be regarded as the field strength of

the six-form potential HRR
(7) = dCRR

(6) . By the symmetry of AdS2 × S2 × S4, we can write

CRR
(6) = b4ê

014567, (3.33)
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where ê014567 is the volume form of unit AdS2 × S4. Then by definition

eϕ
f2
1 f

4
4

f2
2

⋆ db2 + 4b1dj2 = db4. (3.34)

Thus the integrand in (3.30) is db4.

One can express the l.h.s. of (3.34) in terms of A and z using the known expressions

for fields summarized in appendix A. It is in fact possible to integrate the equation:

1

α′2
b4 =

2(z − z̄)(A + Ā)2 − (z2 − z̄2)(A + Ā)(∂zA + ∂z̄Ā)

2(∂zA− ∂z̄Ā)

+
3

2
(z2 − z̄2)(A− Ā) − 6

∫

dz zA− 6

∫

dz̄ z̄Ā, (3.35)

where the last two terms involve indefinite integrals. One can check that (3.34) is satisfied

by this solution. On the real axis where z = z̄, b4 reduces to

b4 = −6α′2

∫

dz zA + c.c. . (3.36)

Thus

b4(e2I−1) − b4(e2I) = −6π2α′3N

∫

[e2I ,e2I−1]
dxρ(x)x . (3.37)

By collecting everything together, (3.27) becomes

2κ2Sbulk/V = −3

2
π3α′4N

g+1
∑

I=1

KI

∫

[e2I ,e2I−1]
dxρ(x)x . (3.38)

This is the contribution from the bulk, in particular from the cycles that have grown

in the bubbling geometry. This is not the complete story, since the volume V should be

regularized and counter-terms on the boundary should be added. We see indeed that (3.38)

seems to account only for special terms in the matrix model action in (3.11).

4. Conclusion

The main achievement of this paper is the largeN solution of the matrix model that governs

circular BPS Wilson loops at strong coupling. We determined the eigenvalue distribution

for an arbitrary representation in terms of geometric data on the spectral curve. The

spectral curve was then identified with the hyperelliptic surface Σ that was found in [7] to

characterize the bubbling geometry for the Wilson loop.

The identification of the hyperelliptic surface Σ as a spectral curve is important for

two reasons. First, one can view this as an example of emergent geometry. The matrix

model is a reduction of the four-dimensional gauge theory [14] and the geometry emerges

out of the dynamics of the eigenvalues.

Second, the identification provides the precise dictionary between field theory and

gravity. Indeed it serves as the basis for the matching of physical quantities computed on
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both sides. A successful example of matching is reported in [17], where the correlators of

the Wilson loop with chiral primaries and the energy-momentum tensor are computed.

It should also be possible to match the computations of the Wilson loop expectation

value. Given our solution of the matrix model, we were able to compute the Wilson loop

expectation value quite easily. On the other hand, the computation of the expectation

value in supergravity is unfinished. Such computation should involve two non-trivial tasks.

One is to properly take into account the new cycles that appear in the bubbling geometry.

In the present work, we developed techniques to perform this task. The other task is to

regulate the infinite volume of the ten-dimensional space-time and to add proper counter-

terms. Usual five-dimensional counter-terms do not suffice, because the bubbling geometry

mixes the AdS5 and S5 directions in a topologically non-trivial way.7 Construction of the

counter-terms is a worthwhile open problem that has applications to other observables such

as surface operators [37].
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A. Details on the bubbling geometry

The solution to the BPS equations can be expressed in terms of two holomorphic functions

A and B on the lower half-plane. Let us define four harmonic functions h1, h̃1, h2, and h̃2

by

A ≡ 1

2
(h1 − ih̃1) , B ≡ 1

2
(h2 − ih̃2). (A.1)

In fact, all the physical fields except the form fields can be written in terms of h1 and h2

alone. The field strengths of the form fields are also given in terms of h1 and h2. The dual

harmonic functions h̃1 and h̃2 only appear in the potentials [7].

It is useful to define the following shorthand notations

V = ∂wh1∂w̄h2 − ∂w̄h1∂wh2 , W = ∂wh1∂w̄h2 + ∂w̄h1∂wh2 ,

N1 = 2h1h2|∂wh1|2 − h2
1W , N2 = 2h1h2|∂wh2|2 − h2

2W, (A.2)

where w is an arbitrary complex coordinate on Σ. Then we have

e2ϕ = −N2

N1
, ρ8 = −W

2N1N2

h4
1h

4
2

,

f4
1 = −4eϕh4

1

W

N1
, f4

2 = 4e−ϕh4
2

W

N2
, f4

4 = 4e−ϕN2

W
, (A.3)

7A similar problem, related to the difficulties of formulating higher-dimensional counter-terms [35], was

already encountered by one of the present authors in the context of bubbling geometries [36].
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while the relevant components of the two- and four-form fields (3.21) are

b1 = −2i
h2

1h2V

N1
− 2h̃2 , b2 = −2i

h1h
2
2V

N2
+ 2h̃1, (A.4)

as given in [7], and

j2 = ih1h2
V

W
+ 3i(C − C̄) − 3

2
(h̃1h2 − h1h̃2) , (A.5)

as we show in appendix B. The holomorphic function C is defined implicitly by

∂wC = A∂wB − B∂wA . (A.6)

The behavior of various quantities near the real axis (y = 0) was studied in [7]:

Intervals Vanishing fiber h1 ∂yh1 h2 V W N1 N2

[e2I , e2I−1] S2 O(1) O(y) O(y) O(1) O(y) O(y) O(y)

others S4 O(y) O(1) O(y) O(y) O(1) O(y4) O(y4)

(A.7)

It follows that b2 = 2h̃1 = −4ImA on [e2I , e2I−1].

B. An explicit expression for the four-form

The component j2 of the RR four-form C(4) (3.21) is not given explicitly in [7], but can

be obtained along the lines of the similar computation in section 9.9 of [38]. We use the

notation of these papers.

The derivative of j2 admits an expression8

dj2 = −if4
4 (ρfwdw − ρfw̄dw̄) , (B.1)

where from eqs. (5.24) and (6.1) of [7] and from the relation ρpw = ∂wφ (φ ≡ ϕ/2) one has

2ρfw = ∂w log
β̄

ᾱ
+

(

ββ̄

αᾱ
− αᾱ

ββ̄

)

∂wφ. (B.2)

Using that

α =

√

κ̄

ρ

√

cosh(φ+ λ̄) , β = i

√

κ̄

ρ

√

sinh(φ+ λ̄) , (B.3)

it becomes

2ρfw =
∂wφ+ ∂wλ

sinh(2φ+ 2λ)
− 2 cosh(λ− λ̄)

| sinh(2φ+ 2λ)|∂wφ . (B.4)

The warp factor is given by f4 = ν(ᾱβ + β̄α) (with ν = ±1), so that

f4
4 =

κ2κ̄2

ρ4

(

sinh(2φ+ λ+ λ̄) − | sinh(2φ+ 2λ)|
)2
. (B.5)

8Using complex coordinates on Σ, the frames become e8 = ew + ew̄, e9 = −i(ew
− ew̄), with ew = ρ dw

and ew̄ = ρ dw̄.
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One can now change the variables from φ (real) and λ (holomorphic) to the real variables

µ and ϑ defined by

λ− λ̄ = iµ , e2iϑ =
sinh(2φ + 2λ)

sinh(2φ + 2λ̄)
, (B.6)

from which also follows

| sinh(2φ+ 2λ)|2 =
(sin 2µ)2

4 sin(ϑ+ µ) sin(ϑ− µ)
, e−iϑ =

| sinh(2φ+ 2λ)|
sinh(2φ+ 2λ)

, (B.7)

and

∂wφ = − sin 2µ∂wϑ

4 sin(ϑ + µ) sin(ϑ − µ)
− i

2
∂wµ+

sin 2ϑ∂wµ

4 sin(ϑ+ µ) sin(ϑ − µ)
. (B.8)

Using eq. (7.4) of [7] one has

2ρfwf
4
4 =

1

2ρ̂4 cos2 µ

[

e−iϑ
(

− sin 2µ∂wϑ− ie2iϑ ∂wµ+ i cos 2µ∂wµ
)

−

−2 cosµ
(

− sin 2µ∂wϑ+ ie−2iϑ ∂wµ− i cos 2µ∂wµ
) ]

. (B.9)

In terms of ψ = sinµ
ρ̂2 e

−iϑ/2, the expression above becomes

2ρfwf
4
4 =

2i

(sin 2µ)2

[

− sin 2µ
(

ψ ∂wψ − ψ2 ∂wψ̄ /ψ̄
)

− ψ̄2 ∂wµ+ cos 2µψ2 ∂wµ+

+2cosµ sin 2µ
(

ψ̄ ∂wψ − ψ ∂wψ̄
)

− 2 cos µψ3 ∂wµ /ψ̄+

+2cosµ cos 2µψψ̄ ∂wµ
]

, (B.10)

and finally, using the equation of motion

∂wψ̄ = cotµ ψ̄ ∂wµ+
1

sinµ
ψ ∂wµ (B.11)

to eliminate the pieces with more than 2 ψ and/or ψ̄,

2ρfwf
4
4 = 2i

[

− ψ ∂wψ

sin 2µ
+
ψ2 − ψ̄2

(sin 2µ)2
∂wµ+

2cos 2µ

(sin 2µ)2
ψ2 ∂wµ+

+
2cos µ

sin 2µ
(ψ̄ ∂wψ − ψ ∂wψ̄) +

2 cos µ cos 2µ

(sin 2µ)2
ψψ̄ ∂wµ

]

. (B.12)

This can be almost written as a total derivative

2ρfwf
4
4 = ∂w

(

2i
ψψ̄

sin µ
− i

ψ2 + ψ̄2

sin 2µ

)

− 3i
ψ2 ∂wµ

sin2 µ
, (B.13)

using again the equation of motion for ψ̄. Using the equation of motion for ψ, eq. (7.7)

of [7], the expression for κ in eqs. (7.8) and (7.13) and the last equation in (7.14), the last

term in the formula above becomes

−ψ
2 ∂wµ

sin2 µ
= ∂w

(

ψ2 cot µ+ ih2
1e

−2λ̄ − ih2
2e

2λ̄
)

+ 2i(h1∂wh2 − h2∂wh1) . (B.14)
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Then

ρfwf
4
4 = −i∂w(h1h2 tanµ) − 3(h1∂wh2 − h2∂wh1) , (B.15)

and one has

j2 = −h1h2 tanµ+ 3i(C − C̄) − 3

2
(h̃1h2 − h1h̃2) . (B.16)

Using (A.6) together with the relations µ = −i(λ − λ̄) and e2λ = ∂wh1/∂wh2, one can

rewrite this as (A.5).

C. Asymptotic behavior

Let us study the asymptotic forms of physical fields in the region z → ∞. We use the

SU(N) identification (2.42) of the matrix model and geometry data.

From the definition (2.6), ω behaves in the asymptotic region of Σ as

ω(z) =
λ

z
+ O

(

1

z3

)

. (C.1)

The order O(z−2) term vanishes in the SU(N) case. Using the formulas in appendix A, we

find the asymptotic forms of various fields:

eϕ ≡ e2φ = gs + O(r−4), (C.2)

f1 =

(

α′2

gsλ

)1/4

r + O(1/r), f2 =

(

α′2

gsλ

)1/4

r + O(1/r), (C.3)

f4 =

(

α′2λ

gs

)1/4

| sin θ| + O(1/r2), (C.4)

b1 = O(1/r), b2 = O(1/r), (C.5)

j2 = −α
′2λ[12θ − 8 sin(2θ) + sin(4θ)]

32gs
+ O(1/r2), (C.6)

b4 = O(1/r). (C.7)

Here we introduced polar coordinates z = reiθ with −π ≤ θ ≤ 0. Note that the metric (1.1)

is written in the Einstein frame where the AdS radius is (α′2λ/gs)
1/4 in our convention (C.2)

for the dilaton. The subleading terms depend on the representation R and can be easily

calculated in terms of the moments of the eigenvalue distribution.

References

[1] D. Berenstein, Large-N BPS states and emergent quantum gravity, JHEP 01 (2006) 125

[hep-th/0507203].

[2] D. Berenstein, A strong coupling expansion for N = 4 SYM theory and other SCFT’s, Int. J.

Mod. Phys. A 23 (2008) 2143 [arXiv:0804.0383].

– 20 –

http://jhep.sissa.it/stdsearch?paper=01%282006%29125
http://arxiv.org/abs/hep-th/0507203
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=IMPAE%2CA23%2C2143
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=IMPAE%2CA23%2C2143
http://arxiv.org/abs/0804.0383


J
H
E
P
0
9
(
2
0
0
8
)
0
5
0

[3] D. Berenstein, A toy model for the AdS/CFT correspondence, JHEP 07 (2004) 018

[hep-th/0403110].

[4] H. Lin, O. Lunin and J.M. Maldacena, Bubbling AdS space and 1/2 BPS geometries, JHEP

10 (2004) 025 [hep-th/0409174].

[5] S. Yamaguchi, Bubbling geometries for half BPS Wilson lines, Int. J. Mod. Phys. A 22

(2007) 1353 [hep-th/0601089].

[6] O. Lunin, On gravitational description of Wilson lines, JHEP 06 (2006) 026

[hep-th/0604133].

[7] E. D’Hoker, J. Estes and M. Gutperle, Gravity duals of half-BPS Wilson loops, JHEP 06

(2007) 063 [arXiv:0705.1004].

[8] J. Gomis and S. Matsuura, Bubbling surface operators and S-duality, JHEP 06 (2007) 025

[arXiv:0704.1657].

[9] J. Gomis and T. Okuda, D-branes as a bubbling Calabi-Yau, JHEP 07 (2007) 005

[arXiv:0704.3080].

[10] J. Gomis and T. Okuda, Wilson loops, geometric transitions and bubbling Calabi-Yau’s,

JHEP 02 (2007) 083 [hep-th/0612190].

[11] N. Halmagyi and T. Okuda, Bubbling Calabi-Yau geometry from matrix models, JHEP 03

(2008) 028 [arXiv:0711.1870].

[12] J.K. Erickson, G.W. Semenoff and K. Zarembo, Wilson loops in N = 4 supersymmetric

Yang-Mills theory, Nucl. Phys. B 582 (2000) 155 [hep-th/0003055].

[13] N. Drukker and D.J. Gross, An exact prediction of N = 4 SUSYM theory for string theory, J.

Math. Phys. 42 (2001) 2896 [hep-th/0010274].

[14] V. Pestun, Localization of gauge theory on a four-sphere and supersymmetric Wilson loops,

arXiv:0712.2824.

[15] G. Bonelli and H. Safaai, On gauge/string correspondence and mirror symmetry, JHEP 06

(2008) 050 [arXiv:0804.2629].

[16] N. Berkovits and C. Vafa, Towards a worldsheet derivation of the Maldacena conjecture,

JHEP 03 (2008) 031 [arXiv:0711.1799].

[17] J. Gomis, S. Matsuura, T. Okuda and D. Trancanelli, Wilson loop correlators at strong

coupling: from matrices to bubbling geometries, JHEP 08 (2008) 068 [arXiv:0807.3330].

[18] T. Okuda, A prediction for bubbling geometries, JHEP 01 (2008) 003 [arXiv:0708.3393].

[19] N. Drukker and B. Fiol, All-genus calculation of Wilson loops using D-branes, JHEP 02

(2005) 010 [hep-th/0501109].

[20] S. Yamaguchi, Wilson loops of anti-symmetric representation and D5-branes, JHEP 05

(2006) 037 [hep-th/0603208].

[21] K. Okuyama and G.W. Semenoff, Wilson loops in N = 4 SYM and fermion droplets, JHEP

06 (2006) 057 [hep-th/0604209].

[22] S.A. Hartnoll and S.P. Kumar, Higher rank Wilson loops from a matrix model, JHEP 08

(2006) 026 [hep-th/0605027].

– 21 –

http://jhep.sissa.it/stdsearch?paper=07%282004%29018
http://arxiv.org/abs/hep-th/0403110
http://jhep.sissa.it/stdsearch?paper=10%282004%29025
http://jhep.sissa.it/stdsearch?paper=10%282004%29025
http://arxiv.org/abs/hep-th/0409174
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=IMPAE%2CA22%2C1353
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=IMPAE%2CA22%2C1353
http://arxiv.org/abs/hep-th/0601089
http://jhep.sissa.it/stdsearch?paper=06%282006%29026
http://arxiv.org/abs/hep-th/0604133
http://jhep.sissa.it/stdsearch?paper=06%282007%29063
http://jhep.sissa.it/stdsearch?paper=06%282007%29063
http://arxiv.org/abs/0705.1004
http://jhep.sissa.it/stdsearch?paper=06%282007%29025
http://arxiv.org/abs/0704.1657
http://jhep.sissa.it/stdsearch?paper=07%282007%29005
http://arxiv.org/abs/0704.3080
http://jhep.sissa.it/stdsearch?paper=02%282007%29083
http://arxiv.org/abs/hep-th/0612190
http://jhep.sissa.it/stdsearch?paper=03%282008%29028
http://jhep.sissa.it/stdsearch?paper=03%282008%29028
http://arxiv.org/abs/0711.1870
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=NUPHA%2CB582%2C155
http://arxiv.org/abs/hep-th/0003055
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=JMAPA%2C42%2C2896
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=JMAPA%2C42%2C2896
http://arxiv.org/abs/hep-th/0010274
http://arxiv.org/abs/0712.2824
http://jhep.sissa.it/stdsearch?paper=06%282008%29050
http://jhep.sissa.it/stdsearch?paper=06%282008%29050
http://arxiv.org/abs/0804.2629
http://jhep.sissa.it/stdsearch?paper=03%282008%29031
http://arxiv.org/abs/0711.1799
http://jhep.sissa.it/stdsearch?paper=08%282008%29068
http://arxiv.org/abs/0807.3330
http://jhep.sissa.it/stdsearch?paper=01%282008%29003
http://arxiv.org/abs/0708.3393
http://jhep.sissa.it/stdsearch?paper=02%282005%29010
http://jhep.sissa.it/stdsearch?paper=02%282005%29010
http://arxiv.org/abs/hep-th/0501109
http://jhep.sissa.it/stdsearch?paper=05%282006%29037
http://jhep.sissa.it/stdsearch?paper=05%282006%29037
http://arxiv.org/abs/hep-th/0603208
http://jhep.sissa.it/stdsearch?paper=06%282006%29057
http://jhep.sissa.it/stdsearch?paper=06%282006%29057
http://arxiv.org/abs/hep-th/0604209
http://jhep.sissa.it/stdsearch?paper=08%282006%29026
http://jhep.sissa.it/stdsearch?paper=08%282006%29026
http://arxiv.org/abs/hep-th/0605027


J
H
E
P
0
9
(
2
0
0
8
)
0
5
0

[23] S. Giombi, R. Ricci and D. Trancanelli, Operator product expansion of higher rank Wilson

loops from D-branes and matrix models, JHEP 10 (2006) 045 [hep-th/0608077].

[24] N. Drukker, 1/4 BPS circular loops, unstable world-sheet instantons and the matrix model,

JHEP 09 (2006) 004 [hep-th/0605151].

[25] N. Drukker, S. Giombi, R. Ricci and D. Trancanelli, On the D3-brane description of some

1/4 BPS Wilson loops, JHEP 04 (2007) 008 [hep-th/0612168].

[26] N. Drukker, S. Giombi, R. Ricci and D. Trancanelli, More supersymmetric Wilson loops,

Phys. Rev. D 76 (2007) 107703 [arXiv:0704.2237].

[27] N. Drukker, S. Giombi, R. Ricci and D. Trancanelli, Wilson loops: from four-dimensional

SYM to two-dimensional YM, Phys. Rev. D 77 (2008) 047901 [arXiv:0707.2699].

[28] N. Drukker, S. Giombi, R. Ricci and D. Trancanelli, Supersymmetric Wilson loops on S3,

JHEP 05 (2008) 017 [arXiv:0711.3226].

[29] P.H. Ginsparg and G.W. Moore, Lectures on 2 −D gravity and 2 −D string theory,

hep-th/9304011.

[30] P. Di Francesco, P.H. Ginsparg and J. Zinn-Justin, 2−D gravity and random matrices, Phys.

Rept. 254 (1995) 1 [hep-th/9306153].

[31] J. Gomis and F. Passerini, Holographic Wilson loops, JHEP 08 (2006) 074 [hep-th/0604007].

[32] J. Gomis and F. Passerini, Wilson loops as D3-branes, JHEP 01 (2007) 097

[hep-th/0612022].

[33] G. Dall’Agata, K. Lechner and D.P. Sorokin, Covariant actions for the bosonic sector of

D = 10 IIB supergravity, Class. and Quant. Grav. 14 (1997) L195 [hep-th/9707044].

[34] E. D’Hoker, J. Estes and M. Gutperle, Ten-dimensional supersymmetric Janus solutions,

Nucl. Phys. B 757 (2006) 79 [hep-th/0603012].

[35] M. Taylor, Higher-dimensional formulation of counterterms, hep-th/0110142.

[36] S. Giombi, M. Kulaxizi, R. Ricci and D. Trancanelli, Half-BPS geometries and

thermodynamics of free fermions, JHEP 01 (2007) 067 [hep-th/0512101].

[37] N. Drukker, J. Gomis and S. Matsuura, Probing N = 4 SYM with surface operators,

arXiv:0805.4199.

[38] E. D’Hoker, J. Estes and M. Gutperle, Exact half-BPS type IIB interface solutions I: local

solution and supersymmetric Janus, JHEP 06 (2007) 021 [arXiv:0705.0022].

– 22 –

http://jhep.sissa.it/stdsearch?paper=10%282006%29045
http://arxiv.org/abs/hep-th/0608077
http://jhep.sissa.it/stdsearch?paper=09%282006%29004
http://arxiv.org/abs/hep-th/0605151
http://jhep.sissa.it/stdsearch?paper=04%282007%29008
http://arxiv.org/abs/hep-th/0612168
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHRVA%2CD76%2C107703
http://arxiv.org/abs/0704.2237
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHRVA%2CD77%2C047901
http://arxiv.org/abs/0707.2699
http://jhep.sissa.it/stdsearch?paper=05%282008%29017
http://arxiv.org/abs/0711.3226
http://arxiv.org/abs/hep-th/9304011
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PRPLC%2C254%2C1
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PRPLC%2C254%2C1
http://arxiv.org/abs/hep-th/9306153
http://jhep.sissa.it/stdsearch?paper=08%282006%29074
http://arxiv.org/abs/hep-th/0604007
http://jhep.sissa.it/stdsearch?paper=01%282007%29097
http://arxiv.org/abs/hep-th/0612022
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=CQGRD%2C14%2CL195
http://arxiv.org/abs/hep-th/9707044
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=NUPHA%2CB757%2C79
http://arxiv.org/abs/hep-th/0603012
http://arxiv.org/abs/hep-th/0110142
http://jhep.sissa.it/stdsearch?paper=01%282007%29067
http://arxiv.org/abs/hep-th/0512101
http://arxiv.org/abs/0805.4199
http://jhep.sissa.it/stdsearch?paper=06%282007%29021
http://arxiv.org/abs/0705.0022

